CODED CACHING AND WIRELESS COMMUNICATIONS

PETROS ELIA

(EURECOM – FRANCE)

Intro

- This talk aims to discuss two aspects:
 - > A <u>novel caching method</u> (Coded caching: yields very substantial gains)
 - In wireless communication networks (Why is wireless really different?)
- New paradigm: Using caches
 - NOT to reduce the volume/size of the problem

"Prefetch something today so that you don't have to send it tomorrow"

BUT to surgically alter the informational <u>structure</u> of networks

> Use caches to change the network to something faster and simpler

Outline

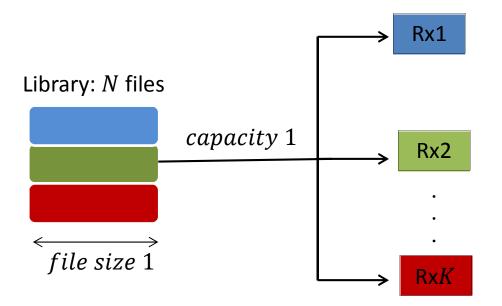
- Basic elements of coded caching
 - Basic properties
 - Main gains
- Important variants
 - File popularity statistics
 - Schemes with reduced subpacketization

Outline

- Need to fuse coded caching with advanced PHY techniques
- Exploring/exploiting salient features of wireless w.r.t. caching
 - > XORs in the air
 - ≻ MIMO
 - Feedback
 - Non linearities
 - > Topology
 - Channel fluctuations
 - Spatial reuse...
- Theoretical and practical open problems/bottlenecks

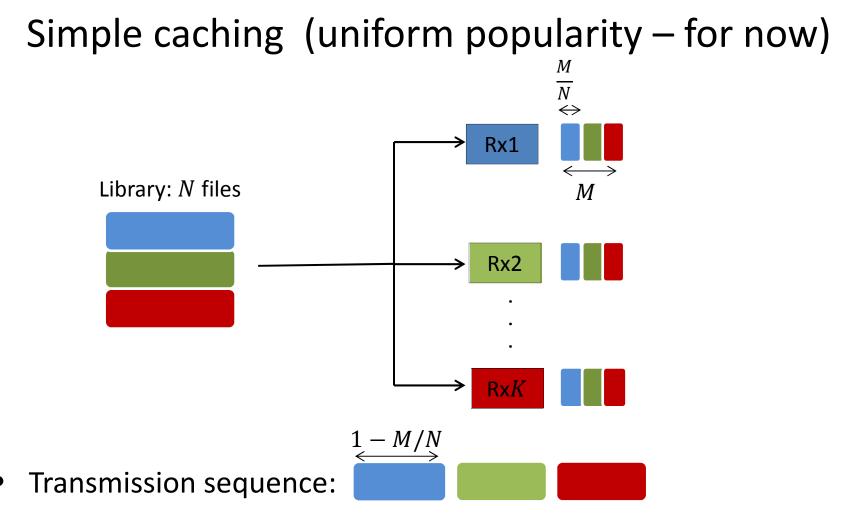
Simple Caching

Single stream channel: No caching



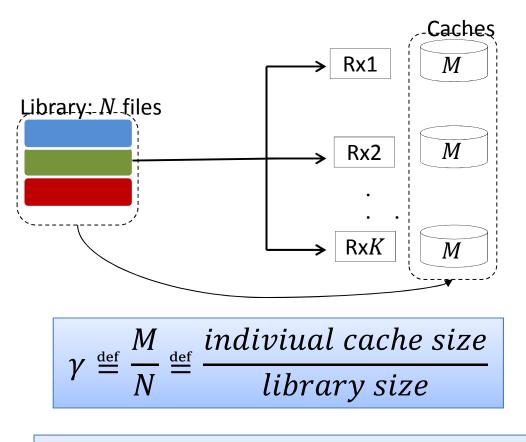
Transmission sequence:

$$T = K$$



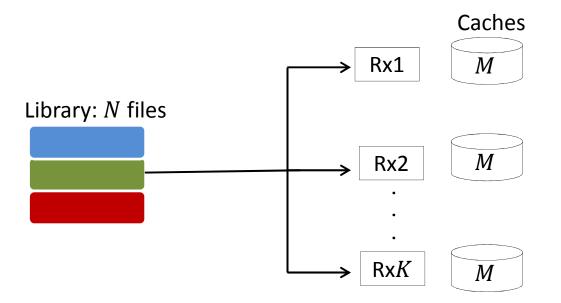
- Local cache gain: (1 M/N) for each user
- The rate: 7 $T = K(1 - M/N) = K(1 - \gamma), \quad \gamma \stackrel{\text{def}}{=} \frac{M}{N}$

Basic Parameters



 $T(\gamma)$: duration of delivery phase OBJECTIVE: reduce $T(\gamma)$

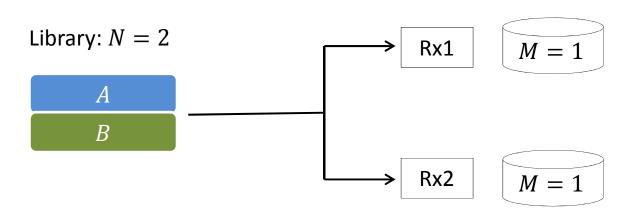
Coded caching



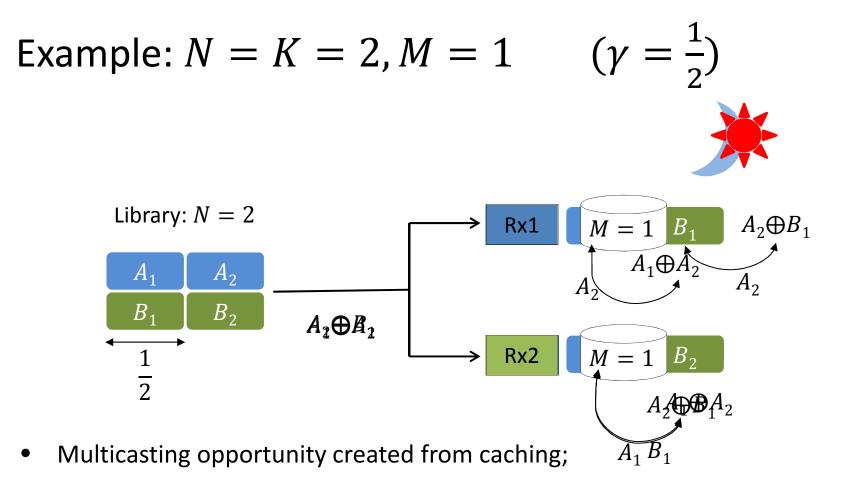
Key breakthrough:

- Cache so that one transmission is useful to many
 - Even if requested files are different
 - Increases multicast opportunities
- Substantial increase in throughput ("worst case")

Example:
$$N = K = 2, M = 1$$
 $(\gamma = \frac{1}{2})$

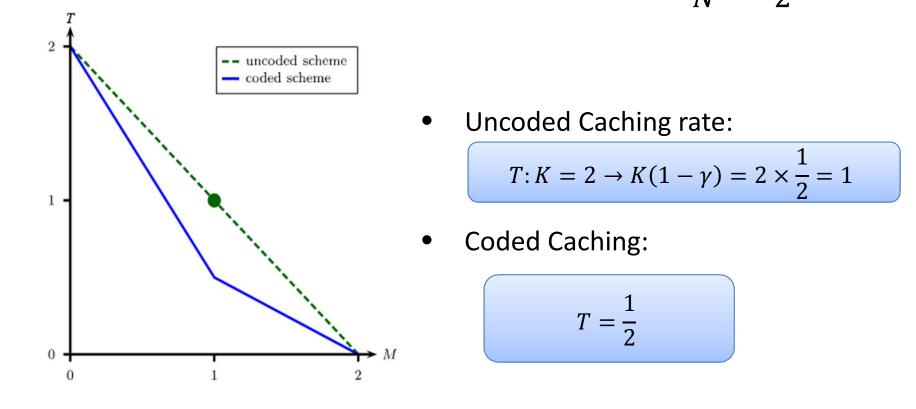


Caches



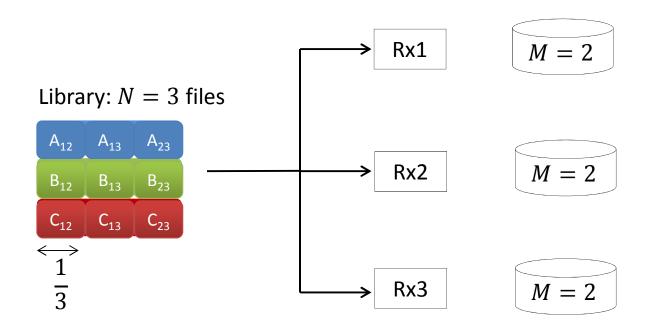
- Hard case: distinct requests
- Easy case: same requests

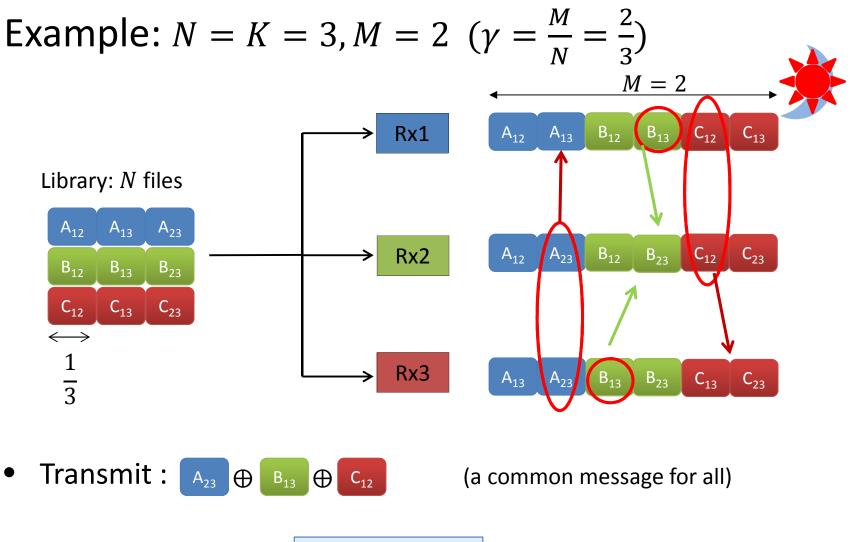
Comparison:
$$N = K = 2, M = 1 \ (\gamma = \frac{M}{N} = \frac{1}{2})$$



• For N = K = 2 case, optimal rate can be achieved for $M \in [0,1]$

Another Example: N = K = 3, M = 2 $(\gamma = \frac{2}{3})$

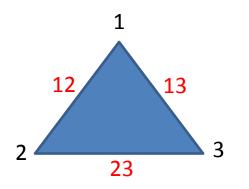




$$T = 1 \times \frac{1}{3} = \frac{1}{3}$$

Coded Caching Pseudocode (recall $\gamma \stackrel{\text{def}}{=} \frac{M}{N}$)

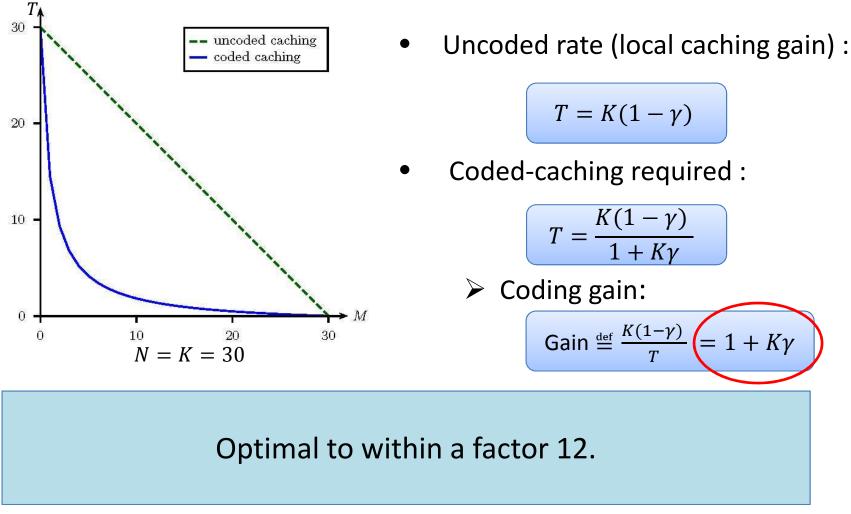
- *N* files in library
- Split each file into $\binom{K}{KM/N} = \binom{K}{K\gamma}$ subfiles
- Cache: In every $\frac{MK}{N} = K\gamma$ set of users, there is one part of each file in common



- Request: Each user asks for one file (out of N)
- Deliver to $K\gamma + 1$ users at a time
 - Via XORs with Kγ + 1 subfiles. Each user (out of the Kγ + 1 now served)
 knows all summands except one (its own requested subfile)
- Repeat for all possible sets of $K\gamma + 1$ users

Algorithm: Maddah-Ali, Niesen (2012)

Maddah-Ali and Niesen's results



When is coded caching worth the effort?

$$K = 10, \gamma = 0.01 \ (K\gamma = 0.1)$$
: $T(M) = 9.9$ (only local gain - prefetching) $T_D(M) = 9.466$ (decentralised caching) $T_C(M) = 9.0$ (centralised caching) $T^*(M) \ge 9.0$ (MN optimal bound)

 \Rightarrow Generally small gains when $K\gamma < 1$

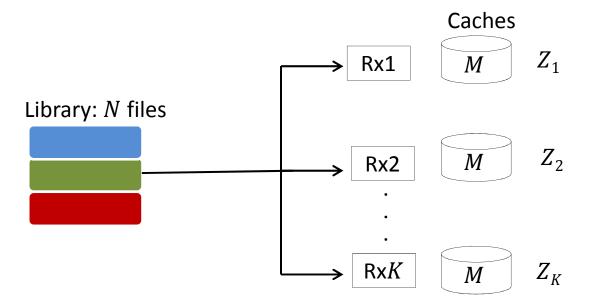
$$K = 1000, \gamma = 0.01 \quad (K\gamma = 10):$$

$$T(M) = 990 \qquad T_C(M) = 90$$

$$T_D(M) = 99 \qquad T^*(M) \ge 25$$

Generally large gains when $K\gamma > 1$

On the Optimality of Uncoded Cache-Placement



Maddah-Ali and Niesen's coded caching is optimal under
 > the constraint of uncoded cache placement

result: Wan et al. (2015) Maddah Ali et al. (2016)

First Conclusions

- Significant gain of coded caching
 - \succ Treating $K\gamma + 1$ users at a time
 - > Worth it when KM > N (unlike traditional caching: $M \approx N$)
- Significant improvement over conventional caching schemes

 \succ For large K, then T need not scale as K

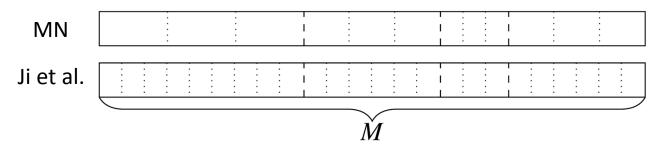
$$T \approx \frac{1 - \gamma}{\gamma} \approx \frac{N}{M}$$

• Potential bottlenecks for small γ : *T* increasing sharply as γ decreases

Coded Caching with Non-uniform Demands

Index-Coding based Scheme for Non-Uniform Demands

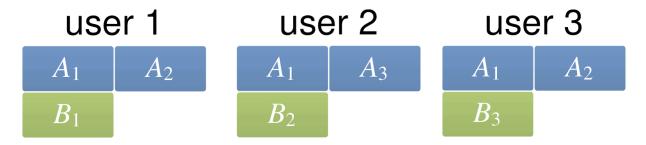
- Subfile size same for all files
- Popular files get more subfiles
- Improvement by creating coding opportunities between batches



- Delivery uses index coding to combine (XOR) different subfiles
 - graph coloring
 - clique cover

Example

- 3 files $\{A, B, C\}$ split into 3 parts each. E.g. $A = \{A_1, A_2, A_3\}$
- Cache distribution $p = \{A = \frac{2}{3}, B = \frac{1}{3}, C = 0\}$ Cache realization C



Request: user1 \rightarrow A, user2 \rightarrow B, user3 \rightarrow C Queried parts: $Q = \{A_3, B_1, B_3, C_1, C_2, C_3\}$

Conflict Graph $H_{C,Q}$

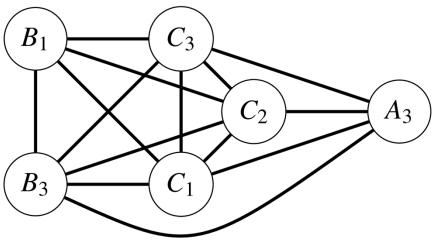
Vertex for each requested subpart ($\in Q$):

- Replicate if multiple requests of a subfile

Edge if

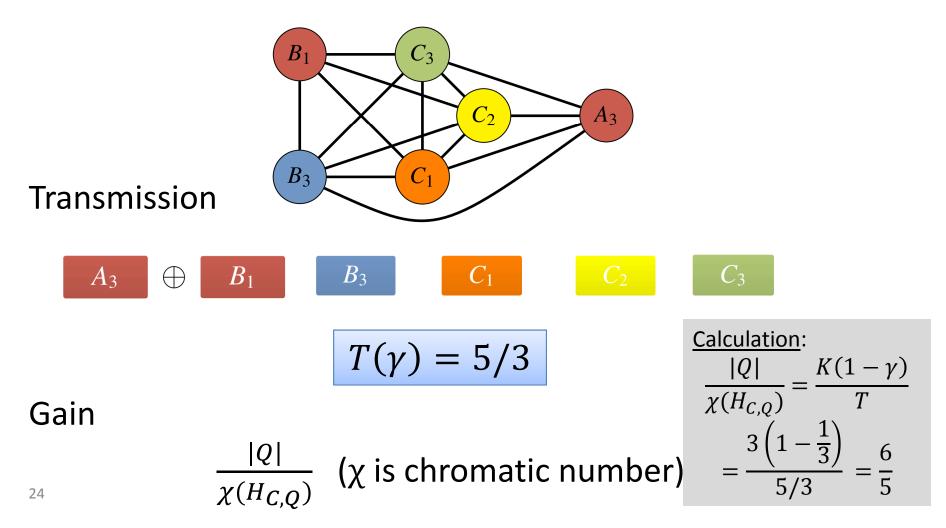
- Not same identity (cannot connect subfile to itself)
- Request(er) not among users caching the other vertex
 see (A₃, B₁)

Requests: user1 \rightarrow A, user2 \rightarrow B, user3 \rightarrow C Queried parts: $Q = \{A_3, B_1, B_3, C_1, C_2, C_3\}$



Graph Coloring $H_{C,Q}$

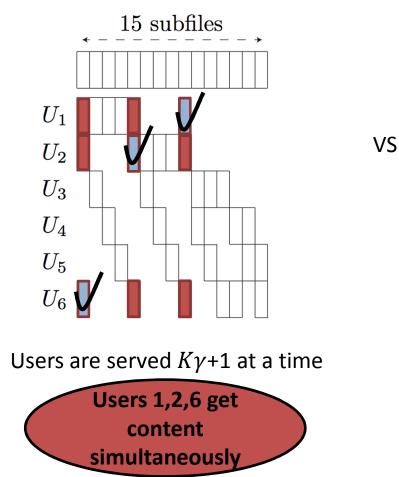
Connected vertices must have different colors

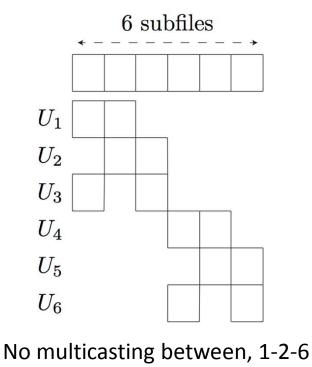


Achilles Heel of Coded Caching

Subpacketization Problem (Motivates Fusing Coded-Caching and PHY)

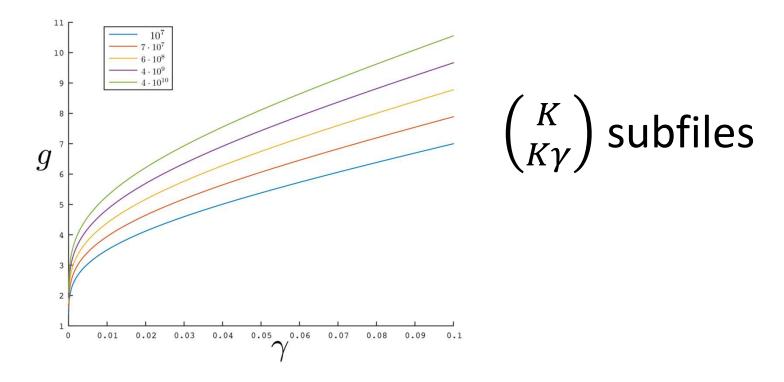
 $K = 6, K\gamma = 2$





26

Effective gains under subpacketization constraints



- Maxed over all *K*
- For original decentralized scheme: gain ≤ 2 if Subpacketization $\leq \frac{e^{K\gamma}}{K\gamma}$

New developments in reducing subpacketization constraints

- Interest in designing algorithms that can tradeoff gain with subpacketization costs
- First breakthrough: Yan et al. (2015) (also Tang et al. 2016)
 - Placement delivery array approach
 - Uses Zig-Zag codes from distributed storage (Tamo-Wang-Bruck)

Previous (MN)

 $gain = K\gamma + 1$ Subpacketization $\approx \left(\frac{e}{\nu}\right)^{K\gamma}$

New (Yan et al.)

gain =
$$K\gamma$$
 Subpacketization = $\left(\frac{1}{\gamma}\right)^{K\gamma-1}$

> Some limitations on the available values of γ

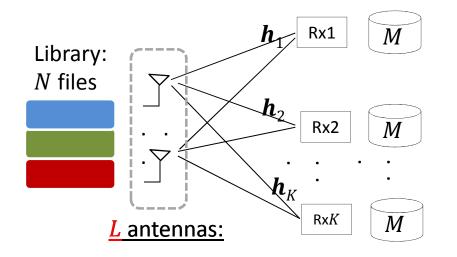
New developments in reducing subpacketization constraints

- Shangguan et al (2016). Hyper-graph theoretic approach:
 - "There do not exist caching schemes that achieve a constant T with subpacketization that grows linearly with K."
 - Interesting constructions that tradeoff performance with subpacketization
 - ▶ Need $K > \frac{4}{\nu^2}$ (approximately) to get gain ≥ 2

▶ Reduced coding gain $\approx \frac{K\gamma^2}{4} \ll K\gamma$

- > K must (essentially) be a square integer (thus rarer for $gain \ge 2$):
- Shanmugam et al. 2017 (employed Ruzsa-Szemeredi graphs):
 - Gain can scale (suboptimally) with K, with subpacketization that scales almost linearly with K"
 - Interesting result of a theoretical nature
 - > Problem: T < K needs massively large $K \gg 1$

Bottlenecks Introduce Need to Combine Memory and PHY Resources in Wireless Networks

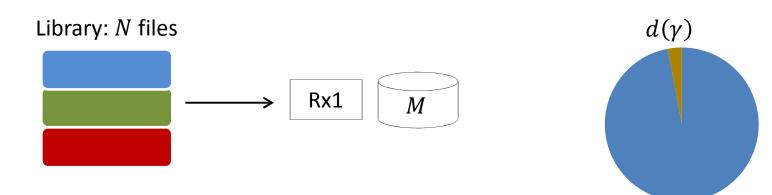


- Exploit additional important resources
 - Linear combinations on the air
 - ➤ MIMO
 - Feedback
- Take advantage of salient features of wireless
 - Non linearities
 - > Topology
 - Spatial reuse

(Cache-aided Degrees of Freedom)

• A equivalent measurement: per-user DoF

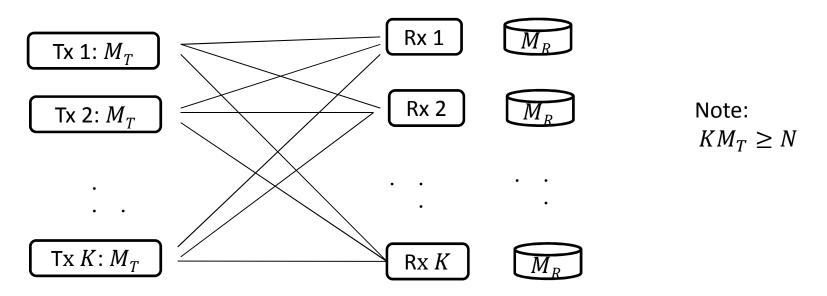
$$d(\gamma) = \frac{1 + \gamma}{T} \in [0, 1]$$



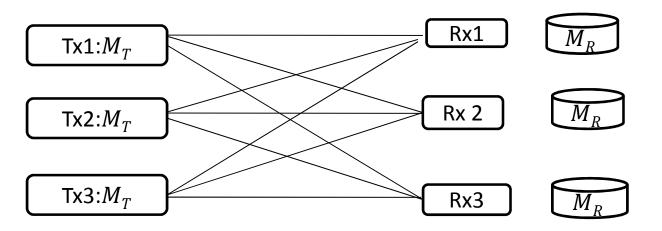
• $T_{opt} = 1 - \gamma \Rightarrow d(\gamma) = 1$ (interference-free)

One Shot Cache-aided Interference channel

- Cache-aided interference channel
 - *K* interfering transmitter/ receiver pairs (fully connected)
 - Each transmitter has cache with size $M_T < N$ $(\gamma_T \stackrel{\text{def}}{=} \frac{M_T}{N})$
 - Each receiver has cache with size $M_R < N$ $(\gamma_R \stackrel{\text{def}}{=} \frac{M_R}{N})$



Example: N = K = 3, $M_T = 2$, $M_R = 1$

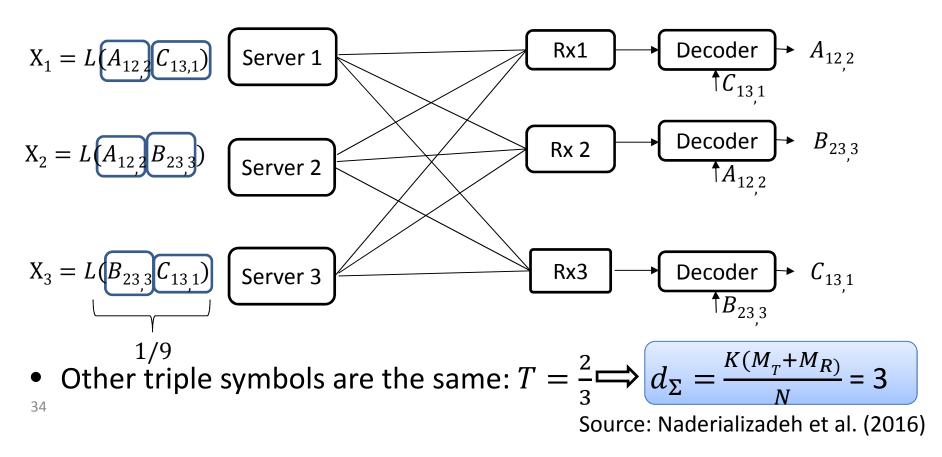


- *N* files: $W_1 = A, W_2 = B, W_3 = C;$ $(\gamma_T = \frac{M_T}{N} = \frac{2}{3}, \gamma_R = \frac{M_T}{N} = \frac{1}{3})$
- Split each file into $\binom{K}{K\gamma_T}\binom{K}{K\gamma_R} = \binom{3}{2}\binom{3}{1} = 9$ parts $A = (A_{12,1}, A_{12,2}, A_{12,3}, A_{13,1}, A_{13,2}, A_{13,3}, A_{23,1}, A_{23,2}, A_{23,3})$
- Cache Tx 1: $A_{12,1}, A_{12,2}, A_{12,3}, A_{13,1}, A_{13,2}$
- Cache Rx 1: $A_{12, 1}, A_{13, 1}, A_{23, 1}$

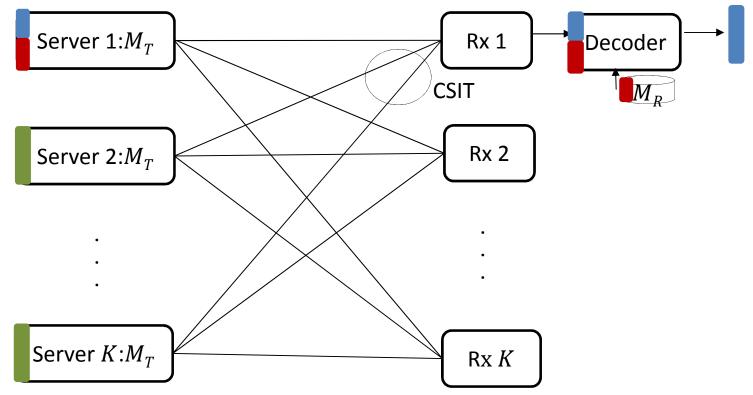
Source: Naderializadeh et al. (2016)

Example: N = K = 3, $M_T = 2$, $M_R = 1$

- Rx1 needs: A_{122} , A_{123} , A_{133} , A_{133} , A_{233} , A_{233}
- Rx2 needs: B_{233} , B_{131} , B_{123} , B_{231} , B_{133} , B_{133}
- Rx3 needs: C_{131} , C_{232} , C_{231} , C_{122} , C_{121} , C_{132} , C_{132}



Idea for the General Case



- With transmitter cooperation and perfect quality CSIT
 - interference can be cancelled
- Combining with the caching content
 - recover the missing information in cache

35

Conclusion – Cache Aided IC (one shot)

• The one-shot linear sum-DoF:

$$d_{\Sigma} = K\gamma_T + K\gamma_R \le K$$

$$d(\gamma_T, \gamma_R) = \gamma_T + \gamma_R \le 1$$

- \blacktriangleright Gap \leq 2 from <u>one-shot linear-DoF</u> optimal
- Equal contribution of tx and rx caches (can change: Shariatpanahi 2017)
- Covers single-stream (MN-13) and multi-server cases (Shariatpanahi et al. 2015, SEE ALSO Shariatpanahi-Caire-Khalaj 2017).

Features exploited: sums on the air (MIMO), CSIT

result: Naderializadeh et al. (2016)

 $d(\gamma)$

Caching and Feedback

Feature to be exploited: MIMO, CSIT, non-linearity Reveals synergy and interplay between memory and feedback

Background

• In most cases, DoF impact of coded caching:

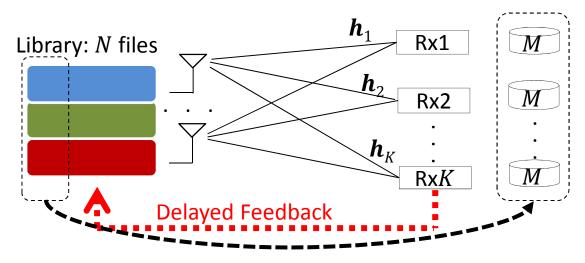
$$d(\gamma) - d(\gamma = 0) = \gamma$$

Even in settings with perfect feedback and many antennas

<u>Additional</u> "piece of pie" due to caching $\approx \gamma \approx 10^{-3} \rightarrow 10^{-2}$ (Roberts et al.)

• Are there settings for which the impact of caching is substantially larger?

Cache-aided K-user BC with delayed CSIT



• Feature: non-linearity

Corollary (Zhang-Elia):

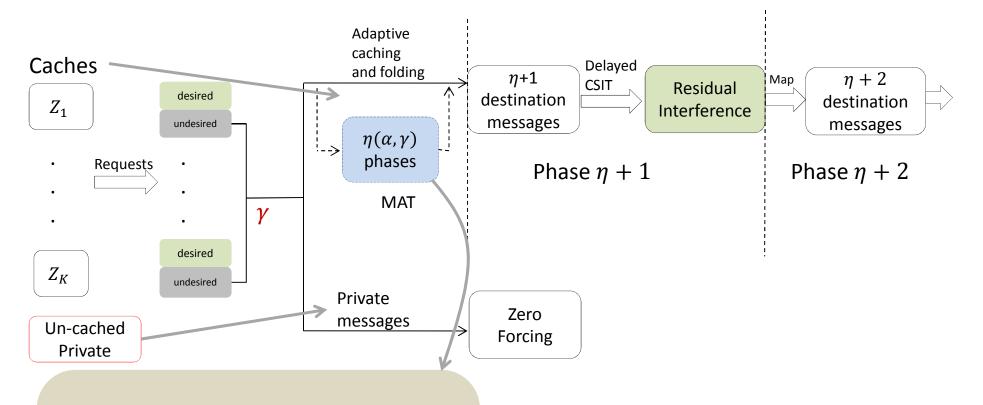
$$T(\gamma) = \log\left(\frac{1}{\gamma}\right) \ll \frac{1}{\gamma}$$

Per-user DoF

$$d(\gamma) = \frac{1 - \gamma}{\log\left(\frac{1}{\gamma}\right)}$$

39

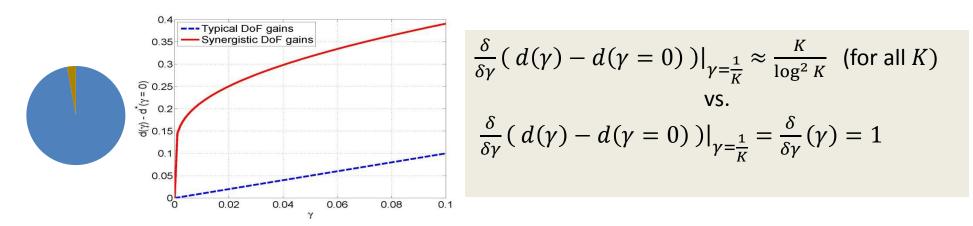
Cache-aided Prospective-hindsight Scheme



Feature:

- With delayed CSIT, multicasting is much faster than broadcasting
- Memory boosts broadcasting

Synergistic DoF Gains



- Feature: CSIT allows for boost from small (reasonable) amounts of caching
- Exponential' effect of coded caching (for sufficiently large K)
 ➤A very small γ = e^{-G} can offer a very satisfactory

$$d(\gamma = e^{-G}) - d(\gamma = 0) \rightarrow \frac{1}{G}$$

Topology (no FB)

Wireless Coded Caching: A Topological Perspective

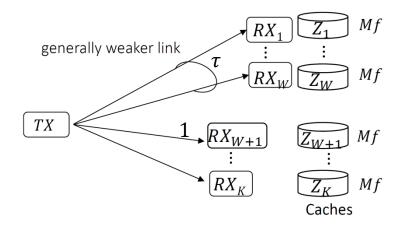
Problem:

<u>`Worst-user effect: one bad apple.....</u>

Features/Opportunities:

• <u>Topological `holes'</u> to attenuate interference

Topological SISO BC



Topologically-uneven wireless <u>SISO</u> *K*-user BC:

- W weak users with normalized capacity $\tau < 1$
- K W strong users with normalized capacity = 1
- Same cache size per user (*M*)
- Problem: multicasting can suffer from "worst-user" effect $d(\gamma) \rightarrow \tau \cdot d(\gamma)$

Topology Threshold

Corollary (Zhang-Elia 16):

There is a threshold

44

$$\tau_{thr} \approx 1 - \left(1 - \frac{W}{K}\right)^{g_{max}}$$

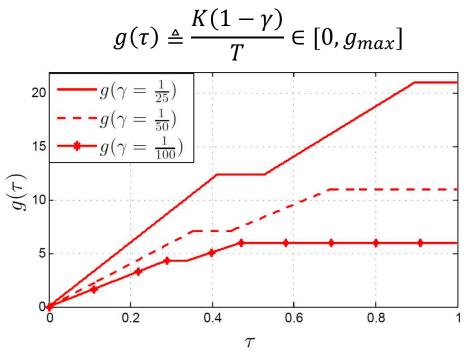
which guarantees full-capacity performance

$$T(\tau \ge \tau_{thr}) = T(K)$$

Recall
$$g_{max} \stackrel{\text{def}}{=} K\gamma + 1$$
, $w \stackrel{\text{def}}{=} \frac{W}{K}$ $\tau_{thr} \in \left[1 - (1 - w)^{g_{max}}, 1 - \left(1 - w - \frac{w\gamma}{1 - \gamma}\right)^{g_{max}}\right]$

Coded-caching Gain

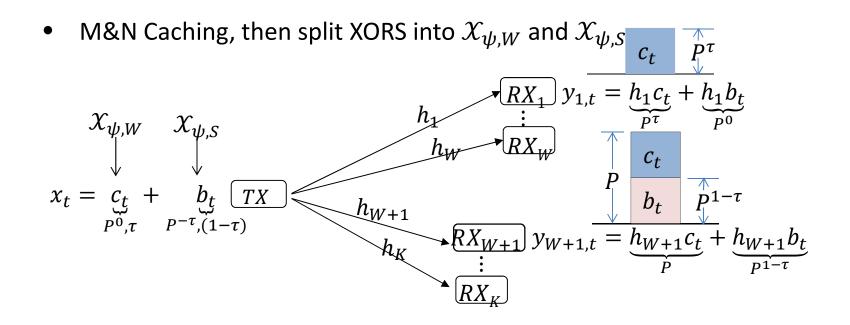
• Coded-caching gain under topology setting



The caching gain for K = 500, W = 50

- The horizontal lines denote the maximum gain g_{max} corresponding to $\tau = 1$
- Demonstrate how these can be achieved even with lesser link capacities.

Intuition of the schemes

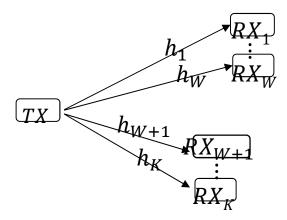


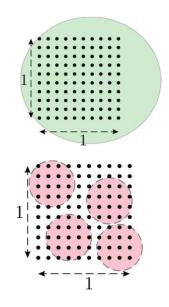
- Interference $\mathcal{X}_{\psi,S}$ hidden from weak users due to topology
 - \succ Treat strong users $(\mathcal{X}_{\psi,S})$ while slowly serving weak $(\mathcal{X}_{\psi,W})$
 - Transmission rate can be kept (in some cases) at 1 (as if all strong)
 - This ameliorates the negative effects of uneven topology

Other salient features of wireless relating to caching

Topological fluctuations (fading)

- "Alpha-fair coded caching"
- Salient feature: Channel fluctuation (with poweradaptation, and scheduling) boosts performance and fairness
- Destounis-Kobayashi-Paschos-Ghorbel 2017
- Spatial Reuse (covering radius of transmitter signals)
 - "Fundamental limits of caching in wireless D2D"
 - Salient feature: coded-caching can substitute need for spatial reuse
 - Salient feature: multicasting and spatial reuse are competing resources
 - ➢ Ji-Caire-Molisch 2015





General Conclusions

Caching in wireless: recap

- Several salient features when caching is for wireless
 - > XORs in the air
 - ➤ MIMO
 - > Feedback
 - > Non linearities
 - > Topology
 - Channel fluctuations
 - ➢ Spatial reuse...
- Feedback and topology are unexplored frontiers in caching for wireless.
 - > Among many interesting differentiating ingredients
 - > Key to absorbing structure from data, and transfusing into the channel
- Interesting tradeoffs, synergies, and opportunities
 - Exponential impact of caching
 - Gravidance of Rx vs Tx caches
 - Spatial reuse vs. multicasting
 - Signal separation vs. multicasting
- Complexity vs. performance

49

Open Problems and Future Directions

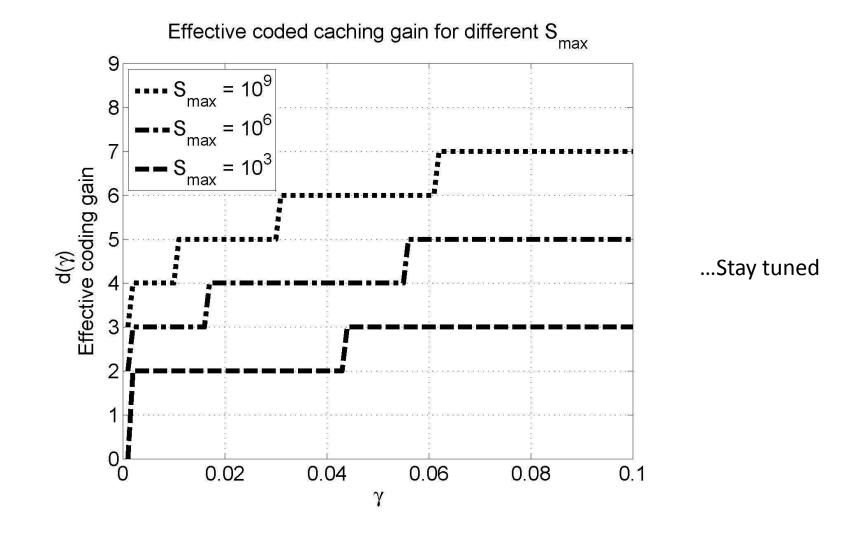
- Fuse Comm-theoretic (info-theoretic) and network theoretic considerations (whatever that means)
- CC in different network topologies
 - Topologies affect FB, interference, and multicasting (all connected)
 - Further ameliorate worst-user effect (progress by Destounis et al.)
- CC in more involved settings
 - E.g. Femto caching ideas with advanced multi-server CC

Open Problems and Future Directions

- Caching with secure communications (e.g. https)
 - Public key encryption changes files differently at different receivers
 - (some progress by Paschos et al. and Engelmann-Elia)

- What is the best way to utilize file popularity and user behavior
 - Open problem. Could be key in unlocking CC for commercial use
 - Machine learning: a dual effort to predict channels and requests
- Computational complexity (clique-finding, cache-allocation)

Crippling Bottleneck - Subpacketization



⁵² Recall theoretical gain $K\gamma + 1 \rightarrow \infty$

THANKS FOR YOUR ATTENTION!

**Looking for Postdocs and PhD students