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Intro

• This talk aims to discuss two aspects: 

� A novel caching method (Coded caching: yields very substantial gains)

� In wireless communication networks (Why is wireless really different?)

• New paradigm: Using caches

�NOT to reduce the volume/size of the problem

�“Prefetch something today so that you don’t have to send it 
tomorrow”

�BUT to surgically alter the informational structure of 
networks

�Use caches to change the network to something faster and simpler
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Outline

• Basic elements of coded caching 

� Basic properties

� Main gains

• Important variants

� File popularity statistics

� Schemes with reduced subpacketization
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Outline

• Need to fuse coded caching with advanced PHY techniques

• Exploring/exploiting salient features of wireless w.r.t. caching

� XORs in the air

� MIMO

� Feedback

� Non linearities

� Topology

� Channel fluctuations

� Spatial reuse…

• Theoretical and practical open problems/bottlenecks
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Simple Caching
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• Transmission sequence:

Single stream channel: No caching 

Library: � files

. 
  

. 
  

.
� = �

Rx1

Rx2

Rx�����	
���	1

������	1
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Simple caching  (uniform popularity – for now)

Library: � files

. 
  

. 
  

.

�

�
�

Rx1

Rx2

Rx�

• Transmission sequence:

1 − �/�

• Local cache gain: 1 −�/� for each user

• The rate:

� = � 1 −�/� = � 1 − � , 							� ≝ �
�7



Library: � files

. 
  

. 
  

.

Rx1

Rx2

Rx�

�

�

�

Caches

� ≝
�
�

≝
���������	���	
���

��� � �	
���
� ≝

�
�

≝
���������	���	
���

��� � �	
���

� � : 		�� ���"�	"�	������ �	���
�

�(�)

� � : 		�� ���"�	"�	������ �	���
�

OBJECTIVE: reduce �(�)

Basic Parameters
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Key breakthrough:

• Cache so that one transmission is useful to many

� Even if requested files are different 

� Increases multicast opportunities  

• Substantial  increase in throughput (“worst case”)

Coded caching

Library: � files

. 
  

. 
  

.

Rx1

Rx2

Rx�

�

�

�

Caches

Result: Maddah-Ali, Niesen (2012)
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Library: � = 2

Caches

Example: � = � = 2,� = 1								(� = &
'
)

Rx1

Rx2

(

)

� = 1

� = 1
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(2

)1 )2

(1

(2

)1

)2

(1

(2⨁)1

Library: � = 2

• Multicasting opportunity created from caching;

� Hard case: distinct requests 

Rx1

Rx2

� Easy case: same requests 

(1⨁(2

� = 1

� = 1

(2⨁)1

(2⨁)1

(2

)1

1
2

(1⨁(2
(2

(1⨁(2

(1

Example: � = � = 2,� = 1								(� = &
'
)
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• Uncoded Caching rate: 

• 	Coded Caching: 

																						

Comparison: � = � = 2,� = 1		(� = �
�
= &

'
)

�:� = 2 → � 1 − � = 2 ,
1
2
= 1�:� = 2 → � 1 − � = 2 ,

1
2
= 1

� =
1
2

� =
1
2

• For � = � = 2 case, optimal rate can be achieved for � ∈ 0,1

Image source: Maddah-Ali, Niesen (2012)
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Another Example: � = � = 3,� = 2						(� = '
0
)

Rx1

Library: � = 3 files

Rx2

Rx3

(

)

1

� = 2

� = 2

� = 2

A12 A13 A23

B12 B13 B23

C12 C13 C23

1
3
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Example: � = � = 3,� = 2		(� = �
�
= '

0
)

Rx1

Library: � files

A12 A13 A23

B12 B13 B23

C12 C13 C23

A12

A12

A13

A13

A23

A23 B12

B12

B13

B13

B23

B23
C12

C12

C13

C13

C23

C23

1
3

Rx2

Rx3

� = 2

• Transmit : A23 B13 C12⨁ ⨁ (a common message for all)

� = 1 ,
1
3
=

1
3

� = 1 ,
1
3
=

1
3
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• � files in library

• Split each file into 
2

2�/� = 2
23 subfiles

• Cache: In every 
�2
�

= �� set of users, there is one part of each file in common

• Request: Each user asks for one file (out of �)

• Deliver to �� + 1 users at a time

� Via XORs with �� + 1 subfiles. Each user (out of the 56 + 7 now served) 

knows all summands except one (its own requested subfile)

• Repeat for all possible sets of �� + 1 users

Coded Caching Pseudocode  (recall � ≝ �
�
)	

Algorithm: Maddah-Ali, Niesen (2012)
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� =
�(1 − �)	
1 + ��

	� =
�(1 − �)	
1 + ��

	

Maddah-Ali and Niesen’s results

• Uncoded rate (local caching gain) : 

• 	 Coded-caching required : 

																						

Optimal to within a factor 12.

� = �(1 − �)� = �(1 − �)

Result and image source: Maddah-Ali, Niesen (2012)

� Coding gain: 

≝ 2(&83)	
9

	 = 1 + ��Gain ≝ 2(&83)	
9

	 = 1 + ��

�

� = � = 30
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When is coded caching worth the effort?

� = 10, � = 0.01 (�� = 0.1):
� � = 9.9 (only local gain - prefetching)

�< � = 9.466 (decentralised caching)

�? � = 9.0 (centralised caching)

�∗ � ≥ 9.0 (MN optimal bound)

⇒		Generally small gains wCDE	56 < 7

� = 1000, � = 0.01 		(�� = 10): 

� � = 990 �? � = 90
�< � = 99 �∗ � ≥ 25

Generally large gains wCDE	56 > 7
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On the Optimality of Uncoded Cache-Placement

• Maddah-Ali and Niesen’s coded caching is optimal under 

� the constraint of uncoded cache placement

Library: � files

. 
  

. 
  

.

Rx1

Rx2

Rx�

�

�

�

Caches

I1

I2

I�

result: Wan et al. (2015)

Maddah Ali et al. (2016) 
18



First Conclusions

� � �

• Significant gain of coded caching

� Treating �� + 1	users at a time 

� Worth it when �� > � (unlike traditional caching: � ≈ �)

• Significant improvement over conventional caching schemes

� For large �,	then � need not scale as �

� ≈ 	
1 − �
�

≈
�
�

• Potential bottlenecks for small �: � increasing sharply as � decreases
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Coded Caching with 

Non-uniform Demands
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Index-Coding based Scheme 

for Non-Uniform Demands

• Subfile size same for all files

• Popular files get more subfiles

• Improvement by creating coding opportunities between batches 

• Delivery uses index coding to combine (XOR) different subfiles
– graph coloring 

– clique cover

Source: Ji-Tulino-Llorca-Caire (2015)

Ji et al.

MN 
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Example

• 3 files K(, ), 1L split into 3 parts each.   E.g. ( = K(&, (', (0L

• Cache distribution M = K( = '
0
, ) = &

0
, 1 = 0L

Cache realization	N

Request: user1→ (, user2→ ), user3→ 1
Queried parts: O = K(0, )&, )0, 1&, 1', 10L
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Conflict Graph ?,P

Vertex for each requested subpart (∈ O):

- Replicate if multiple requests of a subfile

Edge if

• Not same identity (cannot connect subfile to itself)

• Request(er) not among users caching the other vertex               

- see ((0, )&)

Requests: user1→ (, user2→ ), user3→ 1
Queried parts: O = K(0, )&, )0, 1&, 1', 10L

23



Graph Coloring ?,P
Connected vertices must have different colors 

Transmission

Gain
|P|

R(ST,U)
(χ	is chromatic number)

� � = 5/3� � = 5/3
Calculation:

|W|
X(Y?,P)

=
� 1 − �

�

=
3 1 − 1

3
5/3

	=
6
524



Achilles Heel of Coded Caching
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Subpacketization Problem 

(Motivates Fusing Coded-Caching and PHY)

VS

� = 6, �� = 2

Users are served ��+1 at a time No multicasting between, 1-2-6

Users 1,2,6 get 

content 

simultaneously

No overlaps 

between 1-6 and 

2-626



Effective gains 

under subpacketization constraints

27

• Maxed over all �

• For original decentralized scheme: gain Z 2 if  Subpacketization Z [\]

23

2
23 subfiles



New developments in reducing 

subpacketization constraints

28

• Interest in designing algorithms that can tradeoff gain with 

subpacketization costs

• First breakthrough: Yan et al. (2015) (also Tang et al. 2016)

� Placement delivery array approach 

� Uses Zig-Zag codes from distributed storage (Tamo-Wang-Bruck)

Previous (MN) 

^���	 = 	�� + 1 _����`�������"�	 ≈ [
3

23
							

New (Yan et al.)

^���	 = 	�� _����`�������"� = &
3

238&
	

� Some limitations on the available values of �



New developments in reducing 

subpacketization constraints
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• Shangguan et al (2016). Hyper-graph theoretic approach: 

� “There do not exist caching schemes that achieve a constant � with 

subpacketization that grows linearly with �.”

� Interesting constructions that tradeoff performance with subpacketization

� Need � > a
3b (approximately) to get gain ≥ 2

� Reduced coding gain ≈ 23b

a
≪ ��

� �	must  (essentially) be a square integer (thus rarer for ^��� ≥ 	2): 

• Shanmugam et al. 2017 (employed Ruzsa-Szemeredi graphs): 

� “Gain can scale (suboptimally) with K, with subpacketization that scales 

almost linearly with �"
� Interesting result of a theoretical nature

� Problem: � < � needs massively large � ≫ 1



• Exploit additional important 

resources

� Linear combinations on the air

� MIMO

� Feedback

• Take advantage of salient features of 

wireless

� Non linearities

� Topology

� Spatial reuse

Bottlenecks Introduce Need to Combine Memory 

and PHY Resources in Wireless Networks
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j1

j2

j�

Rx1

Rx2

Rx�

Library: 

� files

.   .   

.
�

�

�

.  .   

. .  .   

.

k antennas:k antennas:



• A equivalent measurement: per-user DoF

� � =
1 − �
�

∈ [0,1]

� � = �
�

is normalized local caching gain: prefilled content

� �� � is the gain

• �nop = 1 − �	 ⇒ � � = 1 (interference-free)

Library: � files

Rx1 �

(Cache-aided Degrees of Freedom)
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One Shot Cache-aided Interference channel

Rx 1

.   .   

.

Rx	�

�r

Rx 2 �r

�r

Tx 1: ��

. 
  

. 
  

.

Tx 2: ��

Tx	�: ��

.   .   

.

Result: Naderializadeh et al. (2016)

• Cache-aided interference channel

• � interfering transmitter/ receiver pairs  (fully connected)

• Each transmitter has cache with size �9 < �			(�9 ≝ �s

�
)

• Each receiver has cache with size �t < �			(�t ≝ �u

�
)

Note:

��9 ≥ �
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Example: � = � = 3,�� = 2,�t = 1

• � files: W1 = (,W2 = ),W3 = 1; (�� = �9

�
= '

0
,�r = �9

�
= &

0
)

• Split each file into 
2

239

2
23t

= 0
'

0
& = 9 parts

( = ((12,1
, (12,2

, (12,3
, (13,1

, (13,2
, (13,3

, (23,1
, (23,2

, (23,3
)

• Cache Tx 1: (72,1
, (72,2

, (72,3
, (73,1

, (73,2

• Cache Rx 1:  (12, 7
, (13, 7

, (23, 7

Rx1

Rx3

�r

Rx 2 �r

�r

Tx1:��

Tx2:��

Tx3:��

Source: Naderializadeh et al. (2016)
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• Rx1 needs:  (12,2
, (12,3

, (13,2
, (13,3

, (23,2
, (23,3

• Rx2 needs:  )23,3
, )13,1

, )12,3
, )23,1

, )13,3
, )12,1

• Rx3 needs:  113,1
, 123,2

, 123,1
, 112,2

, 112,1
, 113,2

Rx1

Rx3

Rx 2

Server 1

Server 2

Server 3

X1 = k((12,2	
113,1)

X2 = k((12,2	
)23,3

)

X3 = k()23,3	
113,1

)

Decoder

113,1

(12,2

Decoder

(12,2

	
)23,3

Decoder

)23,3

113,1

• Other triple symbols are the same: � = '
0

�y =
2(�9z�u)

�
	= 3

Source: Naderializadeh et al. (2016)

Example: � = � = 3,�� = 2,�t = 1

1/9
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Idea for the General Case

• With transmitter cooperation and perfect quality CSIT

� interference can be cancelled

• Combining with the caching content

� recover the missing information in cache

Rx 1

.   .   .

Rx	�

Rx 2

	�r

Server 1:��
. 

  
. 

  
.

Server 2:��

Server �:��

Decoder

algorithm: Naderializadeh et al. (2016)

CSIT
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Conclusion – Cache Aided IC (one shot)

• The one-shot linear sum-DoF: 

�Gap Z 2 from one-shot linear-DoF optimal

�Equal contribution of tx and rx caches (can change: Shariatpanahi 2017)

�Covers single-stream (MN-13) and multi-server cases 
(Shariatpanahi et al. 2015, SEE ALSO Shariatpanahi-Caire-Khalaj 2017).

�Features exploited: sums on the air (MIMO), CSIT

�y = ��9 + ��t Z ��y = ��9 + ��t Z �

� �9 , �t = �9 + �t Z 1� �9 , �t = �9 + �t Z 1

result: Naderializadeh et al. (2016)
36
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Caching and Feedback

Feature to be exploited: MIMO, CSIT, non-linearity

Reveals synergy and interplay 

between memory and feedback
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• In most cases, DoF impact of coded caching:

� � − � � = 0 = �

– Even in settings with perfect feedback and many antennas  

Additional “piece of pie” due to caching ≈ � ≈ 1080 → 108' (Roberts et al.)

• Are	there	settings	for	which	the	impact	of	caching	is	substantially	larger?

Background

38

Extra Pie ≈ �
										≈1%

Note – This is a `negative' way of looking at effect of CC



Cache-aided K-user BC with delayed CSIT
j1

j2

j�

Rx1

Rx2

Rx�

�

.  .  .

.  .  .

�

�

Library: � files

.   .   .

Delayed Feedback

• Feature: non-linearity

39

� � = log
1
�

≪
1
�

� � =
log 1

�

� � = log
1
�

≪
1
�

Per-user DoF

� � =
1 − �

log 1
�

Corollary (Zhang-Elia): 



Cache-aided Prospective-hindsight Scheme 

.

.

.

desired

undesired

.

.

.

desired

undesired

I&

I2

Requests

�(�, �)
phases

�+1

destination

messages

Residual 

Interference

Delayed  

CSIT � + 2
destination 

messages

Map
Caches

Phase � + 1 Phase � + 2
MAT

Adaptive 

caching 

and folding

Zero 

Forcing

Private 

messages 

Feature: 

• With delayed CSIT, multicasting is 

much faster than broadcasting

• Memory boosts broadcasting

�

Un-cached 

Private
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• Feature: CSIT allows for boost from small (reasonable) amounts of caching

• `Exponential’ effect of coded caching (for sufficiently large �)

�A very small � = 	 �8� can offer a very satisfactory

Synergistic DoF Gains 

41

� � = 	�8� − � � = 0 →
1
�

� � = 	�8� − � � = 0 →
1
�

�
�3

	� � − � � = 0 	 |3��
\
≈ 2

���b 2
(for all �)

vs.
�
�3

	� � − � � = 0 	 |3��
\
= �

�3
� = 1



Topology (no FB)

Wireless Coded Caching: 

A Topological Perspective

42

Problem: 

• `Worst-user effect: one bad apple…..

Features/Opportunities: 

• Topological `holes’ to attenuate interference



Topological SISO BC

Topologically-uneven wireless SISO �-user BC: 

• � weak users with normalized capacity � < 1
• � −� strong users with normalized capacity = 1
• Same cache size per user (�)	

• Problem: multicasting can suffer from “worst-user” effect

�(�) → � ⋅ �(�)

	1

	�
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Topology Threshold

�

� � ≥ �p�� = � �

There is a threshold 

�p�� ≈ 1 − 1 −
�
�

����

which guarantees full-capacity performance 

� � ≥ �p�� = � �

Corollary (Zhang-Elia 16): 

Recall ^� ¡ ≝ K� + 1,£ ≝ ¤
2

�p�� ∈ 1 − 1 − £ ���� , 1 − 1 − £ −
£�

1 − �

����
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Coded-caching Gain 

• The horizontal lines denote the maximum gain ^� ¡ corresponding to � = 1
• Demonstrate how these can be achieved even with lesser link  capacities.

The caching gain for � = 500, � = 50

• Coded-caching gain under topology setting 

^ � ≜
� 1 − �

�
∈ [0, ^� ¡]
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• Interference ¦§,¨ hidden from weak users due to topology 

� Treat strong users (¦§,¨)	while slowly	serving weak (¦§,¤)
� Transmission rate can be kept (in some cases) at 1 (as if all strong)

� This ameliorates the negative effects of uneven topology

Intuition of the schemes

�ª

rª1

rª�

rª¤z&

rª�

⋮

⋮�&

�¤z&

�2

�¤

¬p = p
®¯,°

+ �p
®±²,(&8°) �¤z&,p = �¤z&p

®

+ �¤z&�p
®�±²

�&,p = �&p³
®²

+ �&�p³
®¯

• M&N Caching, then split XORS into ¦§,¤ and ¦§,¨ p ´°

�p

p
´

´&8°

¦§,¨¦§,¤
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• Topological fluctuations (fading)

� “Alpha-fair coded caching”

� Salient feature: Channel fluctuation (with power-

adaptation, and scheduling) boosts performance 

and fairness 

� Destounis-Kobayashi-Paschos-Ghorbel 2017

Other salient features of wireless 

relating to caching

47

�ª

rª1

rª�

rª¤z&

rª�

⋮

⋮�&

�¤z&

�2

�¤

• Spatial Reuse (covering radius of transmitter signals)

� “Fundamental limits of caching in wireless D2D”

� Salient feature: coded-caching can substitute 

need for spatial reuse

� Salient feature: multicasting and spatial reuse are 

competing resources 

� Ji-Caire-Molisch 2015



General Conclusions 
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• Several salient features when caching is for wireless
� XORs in the air

� MIMO

� Feedback

� Non linearities

� Topology

� Channel fluctuations

� Spatial reuse…

• Feedback and topology are unexplored frontiers in caching for wireless.

� Among many interesting differentiating ingredients

� Key to absorbing structure from data, and transfusing into the channel

• Interesting tradeoffs, synergies, and opportunities
� Exponential impact of caching

� Gravidance of Rx vs Tx caches 

� Spatial reuse vs. multicasting

� Signal separation vs. multicasting

� Complexity vs. performance

Caching in wireless: recap
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Open Problems and Future Directions

• Fuse Comm-theoretic (info-theoretic) and network theoretic 

considerations (whatever that means)

• CC in different network topologies

– Topologies affect FB, interference, and multicasting (all connected)

– Further ameliorate worst-user effect (progress by Destounis et al.)

• CC in more involved settings

– E.g. Femto caching ideas with advanced multi-server CC
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Open Problems and Future Directions

• Caching with secure communications (e.g. https)

– Public key encryption changes files differently at different receivers 

– (some progress by Paschos et al. and Engelmann-Elia)

• What is the best way to utilize file popularity and user 

behavior

– Open problem. Could be key in unlocking CC for commercial use

– Machine learning: a dual effort to predict channels and requests

• Computational complexity (clique-finding, cache-allocation)
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Crippling Bottleneck - Subpacketization

52

…Stay tuned

Recall theoretical gain �� + 1 → ∞
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**Looking for Postdocs and PhD students 


